(решается методом последовательных приближений), равно 1943К. Видно хорошее согласование результатов определения теоретической температуры продуктов сгорания графическим и теоретическим методами.

Таким образом, в процессе теоретических исследований, на примере исходного топлива — Донецкого каменного угля марки «Д», была получена теоретическая температура продуктов неполного сгорания угольной пыли в первой камере генератора газовой струи $T_{reop} \approx 1950 \mathrm{K}$ при коэффициенте избытка окислителя 0,7. Также определен состав продуктов неполного горения угольной пыли: r_{co_2} =9,9%; r_{co} =11,5%; r_{N_2} =66,0%; r_{H_2} =2,6%; r_{H_2O} =10%, которая является исходными данными для последующего расчета параметров процесса полного сгорания во второй камере газоструйного генератора реактивного типа. Для дожигания продуктов неполного сгорания в качестве окислителя используется подогретый сжатый воздух (хладагент первой камеры), что позволяет получить газовую струю с высокими тепловыми параметрами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев Л.М. Пути повышения энергетических параметров газовой струи термоинструмента/Л.М. Васильев, Е.Ю. Пигида, Н.Н. Панасенко//Геотехническая механика. Сб. науч. тр./ИГТМ НАН Украины Днепропетровск, 1988. Вып. 6. С. 89-95.
- 2. Пигида Е.Ю. Способ повышения эффективности разрушения горных пород газовыми струями/Е.Ю. Пигида, В.А. Танцура, М.М. Кононова, Б.И. Милов // Разрушение горных пород при статическом и динамическом нагружении. Сб. науч. тр. / ИГТМ НАН Украины Днепропетровск, 1990. С. 65-69.
- 3. Пигида Е.Ю. Определение параметров камеры сгорания угольной пыли в теплогенерирующих устройствах / Е.Ю. Пигида, Я.А. Пристай, Л.М. Васильев // Геотехническая механика. Сб. науч. тр. / ИГТМ НАН Украины Днепропетровск, 2004. Вып. 49. С. 167-172.
- 4. Теоретические основы теплотехники. Теплотехнический эксперимент / Под общей ред. В.А. Григорьева и В.М. Зорина, кн.2, М.: Энергоатомиздат, 1988. 557 с.

УДК 622.224:532.528

П.Ю. Моисеенко, инженер, ОАО "Краснодонуголь"

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ ГЕНЕРАТОРА КАВИТАЦИИ ЖИДКОСТИ ПРИ ГИДРОИМПУЛЬСНОМ ВОЗДЕЙСТВИИ

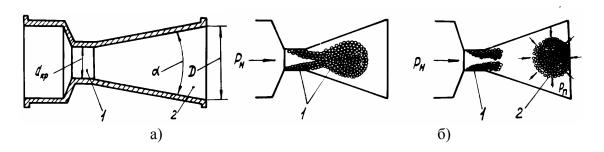
Розглянуто конструктивні особливості кавітаційних генераторів коливання тиску при імпульсному нагнітанні рідини у вугільні пласти.

THE DESIGN FEATHERS OF THE LIQUID CAVITATION GENERATOR AT HYDRO-PULSE INFLUENCE

The design features of the cavitations generators of pressure oscillation at the impulsive injection of liquid in the coal layer are considered.

Применение различных режимов нагнетания жидкости в угольные пласты с целью создания безопасных условий ведения горных работ по пылевому и газовому факторам многократно проверено и подтверждено практикой ведения горных работ. Вместе с тем ухудшение горно-геологических условий на

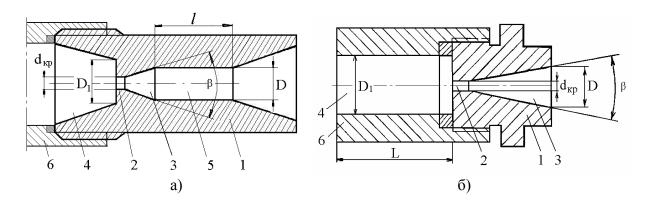
больших глубинах и необходимость увеличения нагрузки на очистные и подготовительные забои при одновременном снижении их количества, привели к значительному снижению эффективности мероприятий.


В первую очередь это связано с увеличением горного давления и изменением свойств углепородного массива, а также отсутствием технических средств, позволяющих осуществлять эффективное гидрорыхление краевой части угольного массива. Разрушение и отжим краевой части пласта, под действием сил горного давления, способствует быстрому прорыву воды в забой выработки. Это требует корректировки параметров гидрорыхления и значительно снижает скорость проведения выработки.

Поэтому до настоящего времени поиск новых научно-технических решений и средств повышения эффективности гидрорыхления угля по-прежнему является сложной и актуальной задачей.

Качественно нового уровня эффективности гидрорыхления угольных пластов можно достичь путем применения импульсного нагнетания жидкости. В работах [1, 2] отмечено, что применение гидроимпульсного воздействия позволяет равномерно нагнетать в пласт вязкие жидкости, что недостижимо при статическом нагнетании. Исходя из этого, были определены цель и задачи исследований настоящей работы.

Целью работы является определение возможности повышения эффективности гидрорыхления угольных пластов гидроимпульсным воздействием. Задачами — исследование генераторов импульсов давления жидкости, работающих в режиме периодически—срывной кавитации и поиск новых технических решений передачи импульсов давления угольному массиву с минимальными потерями энергии через технологические шпуры или скважины.


Для решения поставленных задач выполнен анализ механизма периодической срывной кавитации в трубке Вентури (рис. 1).

а – схема трубки Вентури; б – механизм формирования кавитационной каверны; 1 – критическое сечение; 2 – диффузор; 3 – кавитационная каверна; 4 – оторвавшаяся часть кавитационной каверны Рис. 1 – Механизм периодически срывной кавитации в трубке Вентури

На основании имеющихся результатов исследований кавитационного течения жидкости в местных гидравлических сопротивлениях с разной формой проточного канала [3-4] были разработаны и изготовлены экспериментальные образцы модернизированной конструкции генератора импульсов давления

жидкости (рис. 2).

а – конструкция ГК с преддиффузорным и последиффузорным каналами; б – конструкция ГК с преддиффузорным каналом; 1 – генератор кавитации; 2 – критическое сечение; 3 – диффузор кавитационной камеры; 4 – преддиффузорный проточный канал; 5 – последиффузорный проточный канал; 6 – труба

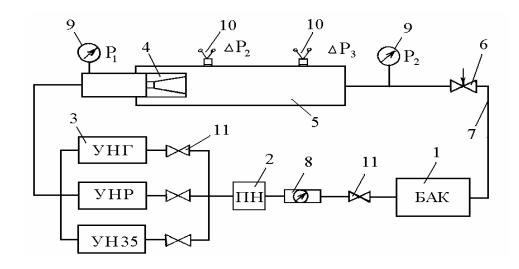
Рис. 2 – Конструкции генераторов кавитационных колебаний давления

Генератор кавитации (ГК) представляет собой трубку Вентури с расчетными параметрами диффузора, преддиффузорного и последиффузорного каналов. Исходными данными для расчета геометрических параметров модернизированного генератора для гидродинамического рыхления угольного пласта являются основные параметры насосной установки нагнетания воды в массив: давление подачи P_1 (кг/см²) и секундный расход жидкости G (кг/сек).

По формуле

$$F_{kp} = \frac{G}{\mu \sqrt{2g\gamma(P_1 - P_{\hat{e}})}} \tag{1}$$

определяется площадь критического сечения генератора. Учитывая, что давление в кавитационной полости $P_{\kappa} << P_1$ его значением, как правило, пренебрегают. Входящие в формулу значения коэффициента расхода генератора μ на основании многочисленных экспериментальных определений этого параметра, принимается равным 0,96; ускорение свободного падения $g=981~\text{см/cek}^2$; удельный вес воды $\gamma=0,001~\text{кг/cm}^3$. По площади критического сечения определяется его диаметр


$$d_{\kappa p} = 2\sqrt{\frac{F_{\kappa p}}{\pi}} \tag{2}$$

Длина цилиндрической части генератора выбирается в соответствии с [3] и равна 0,6÷2,0 d_{кр}. Трубопровод, подводящий жидкость к генератору, должен иметь проходное сечение, обеспечивающее скорость жидкости в нем не более 10 м/сек. Входная часть модернизированного генератора выполняется с двой-

ной кривизной для обеспечения безударного в него входа жидкости.

Использование генератора кавитации такого типа, в качестве источника импульсов давления жидкости, позволяет преобразовать статическое нагнетание в импульсное с частотой следования генерируемых импульсов от 70 до 7000 Гц. Он не требует дополнительного источника энергии, не имеет подвижных частей, рабочий ресурс такого устройства составляет не менее 2000 часов.

Исследование конструктивных параметров ГК и параметров импульсного нагнетания жидкости в режиме кавитации проводилось на испытательном стенде с имитатором скважины (рис.3).

1 — емкость для жидкости; 2 — подпиточный насос; 3 — насос высокого давления; 4 — генератор кавитации; 5 — имитатор скважины; 6 — подпорный дроссель; 7 — рукава высокого давления; 8 — расходомер ВСКМ; 9 — манометр; 10 — индуктивный датчик ДДИ 20; 11 — кран Рис. 3 — Схема испытательного стенда параметров генератора кавитации

Испытания проводились в соответствии с методикой стендовых испытаний при различных режимах работы генератора, отличающихся степенью развития кавитации. В преддиффузорном канале генератора было установлено давление $P_1 \approx 10$ МПа. Насосная установка УНР обеспечивала расход жидкости до 50 л/мин. При установившемся давлении на входе в генератор давление на выходе из трубопровода-имитатора скважины P_2 с помощью подпорного дросселя ступенчато уменьшалось таким образом, что соотношение давлений P_2/P_1 (параметр кавитации — τ) уменьшалось в диапазоне от 0,05 до 0,09. Результаты стендовых испытаний ГК с диаметром критического сечения $d_{\kappa p} = 2,2$ мм приведены в таблице 2.

В таблице: $\tau = P_2/P_1$ — критериальный параметр кавитации; $\Delta t_1(n)$ — длительность пиковой нагрузки; $\Delta t_2(f)$ — период колебаний. $\Delta P_2 = P_{2\text{max}} - P_{1\text{min}}$ — «двойная амплитуда колебаний давления». Под «двойной амплитудой», в связи с негармоничностью колебаний, понимается разность колебаний давлений.

№ п/п Наименование параметра параметра Един. Индекс Диапазон изменения параметра изменения изменения параметра Давление на входе в ГК МПа Рг 10,0 − 38,0 2 Размах колебаний давления в полости ГК МПа Др. 10,0 − 70,0 0,0 − 70,0 3 Частота колебаний давления в имитатора скважины МПа Рг 10,0 − 30,0 4 Давление в трубопроводе кважины МПа Др. 10,0 − 30,0 0,0 − 70,0 5 Размах колебаний давления в имитаторе скважины МПа Др. 200 − 70,0 6 Частота колебаний давления в имитаторе скважины гл. мин Q 2,7 − 270 7 Расход жидкости л/мин Q 2,7 − 270 8 Параметры ГК мм дв. 2,2 − 4,0 - диаметр среза циффузора мм дв. 2,2 − 4,0 - диаметр среза циффузора мм Дв. 20 - относительный диаметр среза диффузора мм Дв. 20 - относительный диаметр среза диффузора мм Дв. 20 - относительный диаметр среза диффузора мм Дв. 20		Таблица 1 - Перечень исследуемых характеристик и контрольно-измерительной аппаратуры	ь исследуемых х	карактеристик и	контрольно-измери	тельной аппа	ратуры	
Параметра измерения параметра Давление на входе в ГК МПа AP_2 Размах колебаний давления в полости ГК МПа AP_2 Частота колебаний давления в имитатора скважины МПа AP_3 Размах колебаний давления в имитаторе скважины МПа AP_3 Растота колебаний давления в имитаторе скважины Гп N_3 Расход жидкости II/M инн Q Параметры ГК II/M инн Q Параметры ГК II/M AP_3 Сопла II/M II/M - диаметр критического сечения II/M AM - диаметр среза диффузора II/M II/M - угол раскрытия диффузора II/M II/M - относительный диаметр среза диффузора II/M II/M	No 11/11	Наименование	Един.	Индекс	Диапазон	Тип	Тип	$Bu\phi$
Давление на входе в ГК МПа РР1 Размах колебаний давления в полости ГК МПа АР2 Частота колебаний давления в имитатора скважины МПа Р2 Давление в трубопроводе имитатора скважины МПа АР3 Частота колебаний давления в имитаторе скважины Гп N3 Расход жидкости л/мин Q Параметры ГК Мм Дкр - диаметр критического сечения сопла мм В - диаметр среза диффузора град. В - угол раскрытия диффузора мм Д - относительный диаметр среза диффузора мм Д	11 /11 21 6	параметра	измерения	параметра	изменения	датчика	прибора	регистрации
Размах колебаний давления в полости ГК МПа ΔР₂ Частота колебаний давления в полости ГК МПа №2 Давление в трубопроводе имитатора скважины МПа ДР₃ Размах колебаний давления в имитаторе скважины Гц №3 Растота колебаний давления в имитаторе скважины Гц №3 Расход жидкости л/мин Q Параметры ГК мм Дкр - диаметр критического сечения мм Дкр - диаметр среза диффузора мм Дкр - угол раскрытия диффузора мм Дкр - относительный диаметр среза диффузора мм Дкр - относительный диаметр среза диффузора мм Дкр	1	Давление на входе в ГК	МПа	P_1	10,0-38,0		манометр	показания манометра
Частота колебаний давления в полости ГК Γ_{II} N_2 Давление в трубопроводе имитатора скважины в имитаторе скважины имитаторе скважины в имитаторе скважины в имитаторе скважины в имитаторе скважины в имитаторе скважины имитаторе скважины в имитаторе скважины в имитаторе скважины имитаторе ими	2	Размах колебаний давления в полости ГК	МПа	ΔP_2	0,0-70,0	<u>дд</u> и-20	ИВП-2	ЭВМ
Давление в трубопроводе имитатора скважиныМПа P_2 Размах колебаний давления в имитаторе скважиныМПа ΔP_3 Частота колебаний давления в имитаторе скважиныГц N_3 Расход жидкостил/мин Q Параметры ГК - диаметр критического сечения сопла - угол раскрытия диффузора 	3	Частота колебаний давления в полости ГК	Гц	N_2	200 – 7000	<u>д</u> им-20	ИВП-2	ЭВМ
Размах колебаний давления в имитаторе скважины МПа ΔP_3 Частота колебаний давления в имитаторе скважины $\Gamma \mu$ N_3 Расход жидкости π/M инн Q Параметры ГК π/M инн Q - диаметр критического сечения сопла π/M $d_{\rm kp}$ - диаметр среза диффузора π/M π/M - угол раскрытия диффузора π/M π/M - относительный диаметр среза диффузора π/M π/M	4	Давление в трубопроводе имитатора скважины	МПа	P_2	10,0-30,0		манометр	показания манометра
Частота колебаний давления в имитаторе скважины Гц N3 Расход жидкости л/мин Q Параметры ГК мм dкр - диаметр критического сечения сопла мм dкр - угол раскрытия диффузора град. в - относительный диаметр среза диффузора мм D - относительный диаметр среза диффузора мм D	5	Размах колебаний давления в имитаторе скважины	МПа	ΔP_3	0,0-70,0	<u>д</u> ин-20	ИВП-2	ЭВМ
Расход жидкости π/M инн Q Параметры ГК - диаметр критического сечения MM $d_{\rm кp}$ - диаметр среза диффузора MM D - угол раскрытия диффузора ρ - относительный диаметр среза ρ диффузора ρ	9	Частота колебаний давления в имитаторе скважины	Гц	N_3	200 - 7000	ДДИ-20	ИВП-2	ЭВМ
Параметры ГК - диаметр критического сечения сопла - диаметр среза диффузора - угол раскрытия диффузора - относительный диаметр среза диффузора - отнофузора мм \overline{D}	7	Расход жидкости	л/мин	\tilde{o}	2,7 – 270		BCKM 16/40 H	показания счетчика
мм $d_{\mathrm{кp}}$ мм D град. β	8	Параметры ГК - диаметр критического сечения						
мм D град. β β		сопла	MM	$d_{ m kp}$	2,2-4,0			
град. β — мм		- диаметр среза диффузора	MM	D	$D=4d_{ m kp}$			
MM E		- угол раскрытия диффузора	град.	β	20			
		- относительный диаметр среза диффузора	MM	\overline{D}	$D/d_{ m kp}$			

Таблица 2 – Результаты стендовых испытаний ГК – 2,2

<i>P</i> ₁ , МПа	<i>P</i> ₂ , МПа	τ	ΔP_2 , ΜΠα	$\Delta t_1(n)$	$\Delta t_2(f)$	f, Гц
10,1 МПа	0,6	0,059	13,4	$0,16\cdot10^{-3}$	$0,58\cdot10^{-3}$	1724
	1,1	0,109	11,0	$0,2\cdot 10^{-3}$	$0,456\cdot10^{-3}$	2192
	1,6	0,158	10,5	$0,165\cdot10^{-3}$	$0,349 \cdot 10^{-3}$	2868
	2,1	0,208	10,0	$0,16\cdot10^{-3}$	$0,293 \cdot 10^{-3}$	3409
	3,1	0,307	10,0	$0,238 \cdot 10^{-3}$	$0,250\cdot10^{-3}$	3906
	4,1	0,406	9,5	$0,238 \cdot 10^{-3}$	$0,224\cdot10^{-3}$	4462
	5,1	0,505	5,5	$0,15\cdot 10^{-3}$	$0,168\cdot10^{-3}$	5952
	6,1	0,604	5,2	$0,156\cdot10^{-3}$	$0,156\cdot10^{-3}$	6410
	7,1	0,703	5,0	$0,15\cdot 10^{-3}$	$0,15\cdot 10^{-3}$	6700

Как показывает анализ полученных результатов в имитаторе скважины при постоянном давлении на входе $P_1 = 10,1$ МПа и изменении давления подпора P_2 от 0,6 МПа до 7,1 МПа реализуются пиковые импульсы давления с «двойной амплитудой» от 13,4 до 5,0 МПа и частотами колебаний от 1724 до 6700 Гц.

Таким образом, в результате проведенных испытаний установлено, что уровень размаха колебаний в трубопроводе за ГК на удалении от него ≈ 100 $d_{\rm kp}$ составляет 1,3-1,8 $P_{\rm 1}$, а в имитаторе скважины на удалении от ГК 2,0 м определяется зависимостью

$$P_2 = 0.3 P_1 \pm \bar{P_2}$$

где $\bar{P_2}$ - установившееся среднее давление подпора жидкости.

Анализ полученных результатов исследований параметров кавитационных автоколебаний (рис. 4) реализовывавшихся в имитаторе скважины за генератором кавитации ΔP_2 и ΔP_3 позволяет утверждать, что расположение генератора кавитации непосредственно в забое скважины позволит практически без потерь энергетического потенциала осуществить преобразование стационарного потока в пульсирующий и передачу импульсов периодически—срывной кавитации, обладающих повышенной разрушительной способностью угольному массиву.

Анализ полученных результатов лабораторных исследований генератора кавитации позволяет сформулировать следующие выводы.

1. Конструктивные параметры опытного образца ГК при давлении нагнетания 10,0 МПа обеспечивают преобразование стационарного потока течения жидкости в пульсирующий, максимальные значения которого превышают

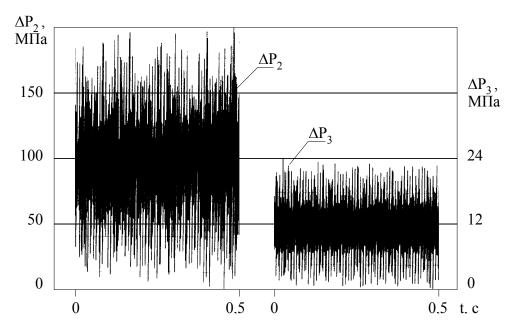


Рис. 4 — Копии участков осциллограммы с записью колебаний давления за генератором кавитации $\Delta P2$ и в трубопроводе-имитаторе скважины $\Delta P3$

- 2. Расположение генератора кавитации в забое скважины позволяет осуществить эффективную передачу энергии импульсов давления периодическисрывной кавитации, обладающих повышенной разрушительной способностью, непосредственно угольному массиву за пределами разрушенной краевой части пласта (зоной отжима).
- 3. Применение генераторов кавитации с целью гидрорыхления угольного пласта импульсным нагнетанием в него жидкости в режиме кавитации имеет ряд преимуществ по сравнению со статическим нагнетанием. Они заключаются в снижении гидросопротивляемости угля, увеличении проницаемости и приемистости угольного массива. Это позволяет увеличить темп нагнетания и объем жидкости, подаваемой в угольный пласт при одновременном снижении временных затрат. В результате повышается эффективность гидрорыхления пласта по всей его мощности, увеличивается зона увлажнения и дегазации, снижается интенсивность пылеобразования при разрушении угля.

СПИСОК ЛИТЕРАТУРЫ

- 1. Васильев Л.М. Развитие трещин в угольном массиве при импульсном нагнетании в него жидкости // Механика и разрушение горных пород. Киев: Наук. думка, 1993. С. 60-65.
- 2. Васильев Л.М., Демченко В.С., Родин А.В. Импульсная насосная установка. Сб. науч. трудов «Геотехническая механика», вып. № 2, Днепропетровск, 2001. С. 3-8.
- 3. В.В.Пилипенко, В.А.Задонцев, И.К.Манько, Н.И.Довготько. Исследование высокочастотных кавитационных автоколебаний в гидравлической системе с трубкой Вентури. В кн. «Кавитационные автоколебания в насосных системах», ч.2. Киев: Наук. думка, 1976. С. 103-113.
- 4. Жулай Ю.А., Манько И.К. Экспериментальное исследование кавитационного течения потока жидкости в трубопроводе за диском. В кн.: Гидрогазодинамика технических систем. Сб. науч. трудов. Киев: Наук. думка, 1985. С. 64-66.